Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.
نویسندگان
چکیده
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.
منابع مشابه
Microtubule dynamics: The view from the tip
Recent studies have suggested that proteins found at the tips of microtubules in vertebrate cells may play an important role in intracellular membrane transport processes. Evidence from fission yeast indicates that such proteins can also regulate microtubule dynamics.
متن کاملThe novel fission yeast protein Pal1p interacts with Hip1-related Sla2p/End4p and is involved in cellular morphogenesis.
The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in a...
متن کاملRegulation of Fission Yeast Morphogenesis by PP2A Activator pta2
Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to th...
متن کاملSte20/GCK kinase Nak1/Orb3 polarizes the actin cytoskeleton in fission yeast during the cell cycle.
Polar growth is a crucial process during cell morphogenesis. The microtubule and actin cytoskeletons, and vesicular transport are tightly regulated to direct cellular growth and to generate specific cell forms. We demonstrate here that the Ste20-related protein kinase Nak1/Orb3 is required in fission yeast to polarize the actin cytoskeleton at the tips of the cells and for cell separation, and ...
متن کاملMultistep and multimode cortical anchoring of tea1p at cell tips in fission yeast.
The fission yeast cell-polarity regulator tea1p is targeted to cell tips by association with growing microtubule ends. Tea1p is subsequently anchored at the cell cortex at cell tips via an unknown mechanism that requires both the tea1p carboxy-terminus and the membrane protein mod5p. Here, we show that a tea1p-related protein, tea3p, binds independently to both mod5p and tea1p, and that tea1p a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2016